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Smooth tests for the logarithmic distribution are compared with three tests: the first is a test due
to Epps and is based on a probability generating function, the second is the Anderson-Darling test,
and the third is due to Klar and is based on the empirical integrated distribution function. These
tests all have substantially better power than the traditional Pearson-Fisher X2 test of fit for the log-
arithmic. These traditional chi-squared tests are the only logarithmic tests of fit commonly applied
by ecologists and other scientists.
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1. Introduction

Species diversity data can sometimes be modeled by a zero-truncated negative binomial dis-
tribution with index parameter near zero. Fisher et al. [1] examined the limit as the index
parameter of this distribution approached zero and so derived the logarithmic distribution. A
random variable X has this distribution if and only if

P(X = x) = px =
γβx

x
, x = 1, 2, 3, . . . (1.1)

in which 0 < β < 1 and γ = −1/ ln(1 − β). The logarithmic or log-series distribution is often
applied to species diversity data.

As an example ofspecies diversity data which the logarithmic distribution may fit, con-
sider the following data on insect catches from the Sierra Tarahuma, Mexico, reported by Al-
drete [2]. Ten species were caught precisely once, three species were caught precisely twice,
and so on according to Table 1. The expected line in Table 1 shows the expected counts on fit-
ting a logarithmic distribution. For these data, the alpha index (AI) of diversity is 9.01, where
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Table 1: Catch frequencies per species and corresponding expected values assuming a logarithmic model
for the Aldrete [2] data.

Times caught 1 2 3 4 5 6 8 10 11 12 13 16 25 69 95 At least 13
No. of species 10 3 4 2 2 2 1 1 1 1 1 1 2 1 1 6
Expected 8.78 4.28 2.78 2.03 1.58 1.28 1.07 0.91 0.62 0.55 — — — — — 7.63

Table 2:Oscar frequencies per film 1983 to 2000 and corresponding expected values assuming a logarithmic
model.

Oscars 1 2 3 4 5 6 7 8 9 10 11 At least 9
No. of films 111 29 14 9 6 1 4 1 2 0 1 3
Expected 103 36 17 9 5 3 2 1 — — — 2

AI = n(1 − ̂β)/̂β in which n is the total number of insects and ̂β is the maximum likelihood
estimator of β. The AI quoted here is defined in Krebs [3, 12.13]; for a discussion of the index of
diversity see Krebs [3, Section 12.4.1]. Note that larger AI implies more diversity while smaller
AI implies less.

It would seem sensible to test the data for consistency with the logarithmic distribution
before quoting an AI value. However, the only statistic that appears to be commonly used by
ecologists as a test of fit for the logarithmic distribution is the so-called chi-squared test, which,
as Krebs [3, Section 12.4.1] notes, may not always have good power.

“The goodness-of-fit of the logarithmic series . . . can be tested by the usual chi-squared
goodness-of-fit test . . . this means low power . . . . Thus in most cases the decision to use the
logarithmic series . . . must be made on ecological grounds, rather than statistical goodness-of-
fit criteria.” [3, page 429].

In this paper, we will examine a number of statistical tests which are considerably more
powerful than the traditional Pearson-Fisher X2 test. These include tests of fit based on com-
ponents of Neyman’s smooth test statistic, the Anderson-Darling test discussed by Lockhart
et al. [4], an empirical integrated distribution function test given by Klar [5], and a test due to
Epps [6] based on a probability generating function (pgf). We suggest that these could be used
to help make a decision as to whether or not to use the logarithmic series based on statisti-
cal as well as ecological criteria. In particular, the dispersion statistic, ̂V2, defined subsequently,
should be useful for identifying the not infrequent case of data for which the abundance species
are more abundant than predicted by the logarithmic series.

Our second example is included for its somewhat curious interest and is not involved
with conventional species diversity. Collins and Hand [7] have counted the number of times,
in the period 1983 to 2000, that a Hollywood filmwon one Oscar, two Oscars, three Oscars, and
so on, giving the data in Table 2. The film with 11 Oscars was “Titanic.”

2. Tests of fit for the logarithmic

A discussion of smooth tests of fit and their components, particularly when testing for the
logarithmic, is given in Appendix A. These tests may be derived as a routine application of
Rayner and Best [8, Theorem 6.1.1]. The first-order component ̂V1 is identically zero when β is
estimated by maximum likelihood, or, equivalently, by method of moments. The test based on
the component ̂V2 suggests whether or not the data are consistent with the logarithmic variance



D. J. Best et al. 3

while the test based on ̂V3 suggests whether or not the data are consistent with logarithmic
moments up to the third. To find p-values for these tests, it is suggested that the parametric
bootstrap is to be used as convergence to the asymptotic standard normal distribution is very
slow. See Gürtler and Henze [9] and Appendix B for details of the parametric bootstrap in a
goodness of fit context.

In Section 3, we give powers for the Anderson-Darling test based on the statistic

A2 =
∞
∑

j=1

Z2
j pj

hj

(

1 − hj

) (2.1)

in which Zj =
∑j

x=1(Ox − npx), hj =
∑j

x=1p̂x, and Ox is the number of observations equal to x.
Summation is halted when x is the minimum such that Ox = 0 and

∑∞
j=xp̂j < 10−3/n. We also

give powers for a test given by Klar [5], based on the empirical integrated distribution function
with test statistic

Tn =
√
n sup

1≤k≤M

∣

∣

∣

∣

∣

k
∑

j=1

Zj

∣

∣

∣

∣

∣

(2.2)

in which M is the largest observation. Finally, for comparison purposes, we quote powers of
the pgf and X2 tests given by Epps [6].

3. Power comparisons

Random deviates from the logarithmic (L), positive Poisson (P+), and positive geometric (G+)
distributions were generated using IMSL [10] routines RNLGR, RNPOI, and RNGEO. Ran-
dom zeta deviates (Z) and random Yule deviates (Y)were found using algorithms of Devroye
[11, pages 551 and 553]. Table 3 gives powers for the same alternatives as used by Epps [6], but
with the addition of two Yule alternatives. For convenience, we reproduce the powers given by
Epps for his pgf and X2 tests. The powers we give for A2, Tn, ̂V 2

2 , ̂V
2
3 , and ̂V 2

2 + ̂V 2
3 were found

using parametric bootstrap with 1000 simulations both for the inner and the outer loops. Note
that the calculation of ̂V3 can involve large numbers, and calculation of the pgf andA2 statistics
can involve small numbers. Care with rounding error may be needed. The statistics Tn and ̂V 2

2
are less prone to rounding error. Klar [5] notes that the smooth tests, the X2 test, and the pgf
test are not consistent against all alternatives.

From Table 3 our powers for Tn are a little greater than those of Klar [5], and we observe
that the power for the Z(1.0) alternative is 0.73, somewhat larger than the 0.40 reported by Klar
[5]. Also from Table 3, we see that the X2 test is not generally competitive with the other tests.

The test based on ̂V 2
2 + ̂V 2

3 performs reasonably well. The test based on the Tn statistic
has power a little less than that for the pgf- and A2-based tests. An advantage of the test based
on Tn is that Klar [5] showed it is consistent.

The test based on the dispersion statistic ̂V 2
2 has good power for the zeta and Yule al-

ternatives, while the A2 and pgf tests generally have competitive powers for all alternatives.
Clearly, the test based on ̂V 2

2 will not have good power for alternatives with similar dispersion
to the logarithmic distribution. If the test based on ̂V 2

2 is not significant but that based on ̂V 2
3

is, this suggests a skewness departure from the logarithmic distribution. However, if the test
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Table 3: Powers of some tests for the logarithmic distribution with n = 50 and α = 0.05.

Alternative ̂V 2
2

̂V 2
3

̂V 2
2 + ̂V 2

3 PGF X2 Tn A2

P + (1.05) 0.39 0.54 0.51 0.56 0.43 0.50 0.57
P + (1.2) 0.49 0.68 0.63 0.72 0.58 0.61 0.73
P + (1.3) 0.57 0.78 0.69 0.79 0.63 0.68 0.79
G + (0.25) 0.45 0.07 0.05 0.78 0.51 0.52 0.77
G + (0.33) 0.32 0.37 0.30 0.61 0.39 0.38 0.58
G + (0.4) 0.21 0.39 0.33 0.46 0.30 0.30 0.48
Z(1.0) 0.85 0.37 0.54 0.84 0.08 0.73 0.72
Z(1.3) 0.74 0.63 0.72 0.72 0.16 0.68 0.69
Z(2.0) 0.50 0.38 0.43 0.44 0.17 0.48 0.42
Y(2.75) 0.55 0.38 0.50 — — 0.49 0.43
Y(3.0) 0.50 0.35 0.45 — — 0.46 0.35

based on ̂V 2
2 is significant, then this suggests that the test based on ̂V 2

3 may be significant due
to either a dispersion or a skewness departure of the data from the logarithmic distribution.
Notice that we say the test based on ̂V 2

3 suggests how the data deviate from the logarithmic.
We do not claim that the data actually do deviate in this manner. See the comments of Henze
and Klar [12].

On the basis of Table 3 powers, we suggest that the tests based on A2 and Klar’s Tn are
considered as tests of fit for the logarithmic distribution. These tests have good power and are
consistent. We recommend that the tests based on Tn and A2 are augmented by the use of ̂V 2

2

and ̂V 2
3 in a data analytic fashion.

4. Examples

In the following parametric bootstrap, p-values for the tests based on ̂V 2
2 , ̂V 2

3 , A
2, and Tn are

given. These use 1000 random samples of the logarithmic distribution with parameter ̂β as
given below. We give ̂V2 and ̂V3 values because they may suggest how the data deviate from
the logarithmic. We give the A2 and Tn values because the tests based on these statistics are
consistent and have good power.

4.1. Insect data

From the data in Table 1, we find ̂β = 0.9743, AI = 9.0104, ̂V2 = 0.4879 with p-value 0.52,
̂V3 = −0.8791 with p-value 0.19, A2 = 0.2613 with p-value 0.82, and Tn = 204.8192 with
p-value 0.33. It appears that the logarithmic distribution is a good fit. In agreement with this,
the Pearson-Fisher statistic takes the value 4.56 on 11 degrees of freedom when data greater
than 12 have been combined.

4.2. Oscars data

We find that ̂V2 = 0.49, ̂V3 = −1.27, and X2 = 7.40 on 7 degrees of freedom if the classes greater
than or equal to 9 are combined. The corresponding p-values are 0.58, 0.08, and 0.62. It appears



D. J. Best et al. 5

that a logarithmic distribution with ̂β = 0.7044 fits the data reasonably well.However, the p-
value for ̂V3 suggests that the data may not be quite as skewed as would be expected for the
logarithmic distribution. Collins and Hand [7] suggest a Yule distribution fits the data well. In
addition, we note that A2 = 0.9727 with p-value 0.12 and Tn = 120.0203 with p-value 0.26.

5. Conclusion

In this paper, we have examined a number of statistical tests which are considerably more
powerful than the traditional Pearson-Fisher X2 test. We suggest that these could be used to
help make a decision as to whether or not to use the logarithmic series based on statistical as
well as ecological criteria. A test of fit could be done before quoting the index of diversity. In
particular, the dispersion statistic, ̂V2, should be useful for identifying the not infrequent case
of data for which the abundance species are more abundant than predicted by the logarithmic
series.

Appendices

A. The smooth tests and their components

For distributions from exponential families the smooth tests can be derived as score statistics
for testing H0: θ = 0 against K : θ /= 0 for observations X1, . . . , Xn from the model

C(θ, β) exp

{

q+k
∑

i=q+1

θigi(x; β)

}

f(x; β) (A.1)

in which

(i) f(x; β) is a probability density function that depends on a q × 1 vector of nuisance
parameters β and for which we test;

(ii) {gi(x; β)} is a complete orthonormal set on f(x; β);

(iii) C(θ; β) is a normalizing constant.

For details see Rayner and Best [8].
The score test statistic has a particularly appealing form

̂Sk = ̂V 2
q+1 + · · · + ̂V 2

q+k, (A.2)

where

̂Vr =
1√
n

n
∑

j=1

gr
(

xj ; ̂β
)

, r = q + 1, . . . , q + k. (A.3)

Here, ̂β is the maximum likelihood estimator of β assuming thatH0 is true.
To define ̂Vr , central moments of f(x; β) up to order 2r are required. For example, to

directly define components up to ̂V3 to test for the logarithmic, we note that the equation to
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estimate β is ̂V1 ≡ 0, as discussed below. To define ̂V2 and ̂V3 requires g2(x; β) and g3(x; β),
which in turn require central logarithmic moments up to order six. These are given by

μ =
γβ

(1 − β)
,

μ2 =
γβ(1 − γβ)

(1 − β)2
,

μ3 =
γβ

(

1 + β − 3γβ + 2γ2β2
)

(1 − β)3
,

μ4 =
γβ

(

1 + 4β − 4γβ + β2 − 4γβ2 + 6γ2β2 − 3γ3β3
)

(1 − β)4
,

μ5 =
γβ

(

1 + 11β + 11β2 − 5γβ − 20γβ2 + 10γ2β2 + β3 − 5γβ3 + 10γ2β3 − 10γ3β3 + 4γ4β4
)

(1 − β)5
,

μ 6 = γβ
(

1 + 26β − 6γβ + 66β2 − 66γβ2 + 15γ2β2 + 26β3 − 66γβ3 + 60γ2β3 − 20γ3β3 + β4

− 6γβ4 + 15γ2β4 − 20γ3β4 + 15γ4β4 − 5γ5β5
)

/(1 − β)6.

(A.4)

To calculate further orthonormal polynomials directly, we could use the result that for the
logarithmic, kr+1 = β∂kr/∂β generates cumulants and hence central moments, but it is more
efficient to use recurrence as described in Rayner et al. [13]. Proceeding directly, the first six
central moments can be used to calculate

g1(x; β) =
(x − μ)√

μ2
,

g2(x; β) =

{

(x − μ)2 − μ3(x − μ)/μ2 − μ2
}

√

μ4 − μ2
3/μ2 − μ2

2

,

g3(x; β) =
(x − μ)3 − a(x − μ)2 − b(x − μ) − c

√

μ6 − 2aμ5 +
(

a2 − 2b
)

μ4 + 2(ab − c)μ3 +
(

b2 + 2ac
)

μ2 + c2

(A.5)

in which

a =

(

μ5 − μ3μ4/μ2 − μ2μ3
)

d
,

b =

(

μ2
4/μ2 − μ2μ4 − μ3μ5/μ2 + μ2

3

)

d
,

c =

(

2μ3μ4 − μ3
3/μ2 − μ2μ5

)

d
,

d = μ4 −
μ2
3

μ2
− μ2

2.

(A.6)

These formulas give the first three orthonormal polynomials for any univariate distribution.
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The components ̂Vr can be called smooth components as they are analogous to the com-
ponents of the smooth test for uniformity introduced byNeyman [14]. His smooth components
also used orthonormal polynomials. When testing for distributions from exponential families
these components are asymptotically independent and asymptotically have the standard nor-
mal distribution.

For the logarithmic distribution, the maximum likelihood and method of moments esti-
mators ̂β of β coincide, given by ̂V1 ≡ 0 or

X = −
̂β

(

1 − ̂β
)

ln
(

1 − ̂β
)
=

̂βγ̂
(

1 − ̂β
)
= μ̂. (A.7)

To solve this equation, the Newton-Raphson algorithm can be used. An initial estimate of ̂β
and other details helpful in the solution are given in Birch [15]. Note also that for the logarith-
mic, ̂V2 is proportional to (m2 − μ̂2) where m2 =

∑n
j=1(xj − x)2/n, so the test based on ̂V2 tests

for the dispersion of the logarithmic distribution. Similarly, if m3 =
∑n

j=1(xj − x)3/n, then the

numerator of ̂V3 is of the form n(m3 − am2 − c), so the test based on ̂V3 assesses whether the
data are consistent with moments of the logarithmic up to the third.

B. P-values via the parametric bootstrap

Gürtler and Henze [9, page 223] suggest that p-values can be obtained using an analogue of
the parametric bootstrap. IfWn denotes a test statistic, calculatewn := Wn(x1, x2, . . . , xn)where
x1, x2, . . . , xn denote, as usual, the data. Find an estimate ̂β from the data and conditional on
this estimate, generate B = 10 000 say pseudorandom samples of size n, each having the loga-
rithmic (̂β) distribution. For j = 1, . . . , B compute the value W∗

n,j on each random sample. The
parametric bootstrap p-value is then the proportion of the W∗

n,j that are at least the observed

wn, namely,
∑B

j=1I(W
∗
n,j ≥ wn)/B.

The above requires random logarithmic (β) values. Devroye [11, page 547] outlines an
algorithm for generating random logarithmic deviates. Alternatively, the routine RNLGR from
IMSL [10] can be used. To obtain p-values for two-tailed tests proceed as above and find the
p-value, say P. Then if P ≤ 0.5, the two-tailed p-value is 2P, while if P > 0.5, the two-tailed
p-value is 2(1 − P).
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